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Abstract

The aim of this paper is to develop a thermodynamically consistent micromechanical concept for the damage analysis
of viscoelastic and quasi-brittle materials. As kinematical damage variables a set of scalar-, vector-, and tensor-valued
functions is chosen to describe isotropic and anisotropic damage. Since the process of material degradation is governed
by physical mechanisms on levels with different length scale, the macro- and mesolevel, where on the mesolevel
microdefects evolve due to microforces, we formulate in this paper the dynamical balance laws for macro- and micro-
forces and the first and second law of thermodynamics for macro- and mesolevel.

Assuming a general form of the constitutive equations for thermo-viscoelastic and quasi-brittle materials, it is shown
that according to the restrictions imposed by the Clausius—-Duhem inequality macro- and microforces consist of two
parts, a non-dissipative and a dissipative part, where on the mesolevel the latter can be regarded as driving forces on
moving microdefects. It is shown that the non-dissipative forces can be derived from a free energy potential and the
dissipative forces from a dissipation pseudo-potential, if its existence can be assured.

The micromechanical damage theory presented in this paper can be considered as a framework which enables the
formulation of various weakly nonlocal and gradient, respectively, damage models. This is outlined in detail for isotropic
and anisotropic damage.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction

Local damage models for brittle and ductile materials were extensively discussed in the literature (e.g.
Kachanov, 1958, 1986; Ortiz, 1985; Simo and Ju, 1987; Chaboche, 1988; Lemaitre, 1992; Krajcinovic,
1996). In local phenomenological theories, the damage parameters are considered as internal variables, for
which evolution laws have to be given. Besides the fact that it is difficult to determine appropriate damage
evolution laws, the FE-solutions based on local damage theories suffer from strong mesh-dependency, if
problems with damage localization are analyzed. Also it was observed that the so-called size effect of
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structures cannot be simulated by local damage models (cf. Bazant and Ozbolt, 1990; Bazant and Planas,
1998). The reason for these difficulties lies in the fact that material degradation during the lifetime of
structures is governed by physical mechanisms on levels with different length scale, the macro- and meso- or
microlevel. In brittle material microcracks and microvoids and in ductile material microvoids, micro-
shearbands and dislocations are observed, which can evolve relative to the surrounding material.

To overcome the numerical difficulties associated with the application of FE-solution methods, based on
local damage theories, integral enhancement (e.g. Bazant and Pijaudier-Cabot, 1988; Bazant, 1991) and
gradient enhancement (e.g. de Borst et al., 1996; Kuhl et al., 2000; Geers et al., 2000) were introduced into
local damage models. Also, applying local models of finite elastoplasticity, strong mesh-dependency of the
FE-solutions is observed, if localization of the plastic deformation occurs (e.g. Roehl and Ramm, 1996;
Miehe, 1998; Schieck et al., 1999). Here also, gradient-enhanced models of plasticity were proposed (e.g. de
Borst and Miihlhaus, 1992). These models can be considered as phenomenological theories with weakly
nonlocal enhancement: damage and plasticity variables are treated as internal variables, for which evolu-
tion laws have to be assumed, and strain or hardening parameters are enhanced by second gradient terms.

To model the material behavior on levels with different length scale a quite different approach is applied
e.g. in Capriz, 1989; Marshall et al., 1991; Naghdi and Srinivasa, 1993; Fried and Gurtin, 1994; Le and
Stumpf, 1996 and Frémond and Nedjar, 1996. In these papers theories are investigated, where besides the
balance laws of macroforces also balance laws of microforces are formulated. To model the material be-
havior on levels with different length scale taking into account discontinuous fields of defects a six-
dimensional kinematical concept with non-Euclidean space structure is introduced in Stumpf and Saczuk,
2000 and Saczuk et al., 2001. There, balance laws of macroforces and microforces are derived applying a
variational formulation. Rakotomanana (2002) presents a kinematical theory of continua with discontin-
uous fields of defects on the mesolevel. As application he investigates the measuring of the loss in an ul-
trasonic signal due to propagation through defected in situ structures.

Thermodynamically consistent frameworks for a damage analysis published in the literature so far are
mainly devoted to phenomenological theories, where the fields of plasticity and damage are treated as
internal variables, for which evolution laws have to be postulated (e.g. Hansen and Schreyer, 1994; Arnold
and Saleeb, 1994; Li, 1999). In Svedberg and Runesson (1997) the internal variable approach is investigated
for isothermal plasticity with coupling to isotropic damage, where for regularization reason a gradient-
enhancement of the isotropic hardening parameter is introduced.

The aim of this paper is to present a thermodynamically consistent micromechanical concept for the
analysis of isotropic and anisotropic damage evolution in thermo-viscoelastic and quasi-brittle materials.
Since our goal is the modeling of consistent damage theories simple enough to construct appropriate FE
solution algorithms and to analyze the degradation of engineering structures, we use an Euclidean space
concept with classical gradient operator. To take into account anisotropic damage a damage variable of
scalar-, vector- and tensor-type or any combination thereof is introduced (see also Krajcinovic, 1998). Since
the degradation of material is essentially caused by nucleation and evolution of microdefects as micro-
cracks, microvoids and dislocations on a mesolevel, and this evolution of the microdefects is caused by
microforces, we formulate dynamical balance laws for macro- and microforces and the first and second law
of thermodynamics for the macro- and mesolevel. Microdefects move relative to the surrounding mass.
Therefore, in the dynamical balance laws for microforces we take into account the rate of micromomentum
and in the balance law of energy the kinetic energy of moving microdefects, both independent of the mass.

For thermo-viscoelastic material behavior, we assume the constitutive equations for macro- and mi-
croforces and heat transfer in general form. It is then shown that from the restrictions imposed by the
Clausius—Duhem inequality, macro- as well as microforces consist of two parts, a non-dissipative and a
dissipative part. On the mesolevel the latter represent the driving forces on microdefects causing their
dissipative evolution. Corresponding to the split of macro- and microforces into non-dissipative and dis-
sipative parts, the constitutive equations can be represented via a free energy potential and a dissipation
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pseudo-potential, if the latter exists. Then, from the free energy potential the non-dissipative forces and
from the dissipative pseudo-potential the dissipative driving forces follow.

Considering the presented micromechanical damage theory as a framework, various weakly nonlocal
and gradient, respectively, isotropic and anisotropic damage models can be derived. For numerical ap-
plications of special importance are anisotropic damage models, where the gradients of some damage
variables can be neglected. In this case, the corresponding balance laws of microforces lead directly to
evolution laws for these damage variables.

The organization of the paper is as follows.

In Section 2, the micromechanical modeling of damage phenomena is investigated by formulating dy-
namical balance laws of macro- and microforces and the first and second law of thermodynamics for
macro- and mesolevel. Constitutive equations for thermo-viscoelastic and quasi-brittle materials coupled
with damage are assumed in general form, where the constitutive restrictions follow from the Clausius—
Duhem inequality. It is shown that macro- and microforces consist of two parts, a non-dissipative and a
dissipative part. Introducing the constitutive equations into the balance laws of macro- and microforces
leads to the governing equations of dynamical defect evolution.

In Section 3, the isotropic damage described by a scalar function is investigated for various classes of
material properties and process data. In Section 4, we consider the case of anisotropic damage. If the
anisotropy is described by an anisotropy tensor, then the procedure of specification and simplification
outlined for isotropic damage in Section 3 can be applied correspondingly. In the case of an anisotropic
damage description with a scalar and an anisotropy tensor, it is often possible to assume that the gradient
of the anisotropy tensor can be neglected, while the gradient of the scalar function has to be taken into
account. It is shown that in this case the evolution law for the anisotropy tensor can be derived directly
from the corresponding balance law of microforces.

2. Micromechanical modeling of damage phenomena

The following notation scheme is used. The three-dimensional Euclidean point space is denoted by & and
the associated translation space (the three-dimensional Euclidean vector space) by E. Moreover, vectors are
denoted by lower case bold letters and multilinear operators (tensors) by upper case bold letters. Whenever
finite dimensional vector spaces are considered we shall identify the tensor product vector space F ® E with
the vector space L(E, F) of all linear maps of the vector space E into any other inner product vector space F'.
We write u - w for the inner product of vectors regardless of the vector space in question. We also recall that
the inner product of two tensors (linear maps) A,B € L(E,F) is defined by A-B = tr(A"B), where
A", BT € L(F,E) and “tr” denotes the trace of the tensor.

2.1. Damage variables and kinematics of damaged bodies

For the purpose of this paper, the material body under consideration may be identified with a region
By C & in the physical space, which the body occupies in a fixed reference configuration. The motion of the
body is then described by a mapping y : By x T — &, which carries each material particle X € By into its
place x = x(X, ) in the spatial configuration B(¢) = y(By, ) of the body at time instant ¢, where 7 denotes
the underlying time interval. Once the mapping y is specified, all kinematic variables on the macrolevel such
as velocity, deformation gradient, strain tensors, etc., are defined in the standard manner (Truesdell and
Noll, 1965).

To account for the physical mechanisms underlying the damage process on macro- and mesolevel, a
reformulation of the kinematical concept and of some principles of classical continuum thermomechanics is
required. On the macroscale, the damage process is described by introducing certain damage variables,
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which can be viewed as macroscopic measures of the internal degradation of the material. In this paper, we
shall assume that the state of damage in a material can be characterized by a damage variable d(X, ¢) of any
nature (scalar, vector or tensor). We also admit that d may represent an ordered collection of any number
of damage variables possibly of different nature, e.g. d = (d, d, D) consisting of a scalar d, a vector d, and a
second rank tensor D. For definiteness and proper mathematical setting, we assume that d : By x T' — F,
where F is a finite-dimensional inner product vector space (e.g. R, ®”E or ®’E for some p > 1,
ROE®(EQE), etc.) and we shall refer to F as a “damage space”.

2.2. Integral laws of mechanics and thermodynamics on macro- and mesolevel

Experimentally observed progressive degradation of mechanical and thermal properties of continua is
governed by physical mechanisms observed on levels with different length scale, on macro-, meso-, and
microlevel, respectively. In brittle material there can be microdefects as microcracks and microvoids, in
ductile material microvoids, dislocations and microshearbands. While the precise physical nature of the
microdefects can be difficult to identify for a specific material, it is obvious that the nucleation and evo-
lution of the microdefects are caused by forces on the mesolevel. This suggests to postulate additional
balance laws for microforces, besides the classical balance laws of forces on the macrolevel. Within such
two-level modeling of damage phenomena the first and second law of thermodynamics have to be modified
taking into account the contributions from the mesolevel.

We assume that the referential mass density g,(X) is independent of time. The balance laws of ma-
cromomentum and angular macromomentum can be given as

g/de:/ bdv+/ Tnyda,
dt Jp R ary

d
—/xxpdv:/xxbdv+/ x X Tnyda.
dr Py 50 0P

Here p(X,t) € E denotes the macromomentum, b(X, ¢) € E the classical body force, T(X,?) € E® E the
first Piola-Kirchhoff stress tensor, x = (X, ¢) the place of a material point in the actual configuration, and
ny(X) the outward unit normal vector to the boundary 0P, of a subdomain Py C B,.

To formulate the balance law of microforces, we assume that the microdefects are characterized by a
“damage” field d: By x T — F and that at each time instant the stress state on the mesolevel may be
characterized by an intrinsic microforce k(X, ) € F, an extrinsic microforce g(X,¢) € F representing e.g.
chemical reactions breaking internal material bonds, and a microstress tensor H(X,¢) € F ® E. Then, the
balance of microforces can be given as

d
—/ mdv:/(—k—i—g)dv—i—/ Hnyda. (2.2)
dt Jp, Py o,

Evolving microdefects have no mass but they have inertia. This effect is included in the present theory
through the micromomentum m(X, 7). We have to point out that the integration of the terms in (2.2) has to
be performed over the same subdomain Py, C By and the boundary surface 0F, as in (2.1).

Besides the balance laws for macro- and microforces we have to formulate the first law of thermo-
dynamics on macro- and mesolevel taking into account also the kinetic energy of evolving defects, the
contribution of the extrinsic microforce g in the interior of Py and of the surface microforce Hny on the
surface 0P,

d . .
&{/(gos—l—ic)dv}:/(b-k+g-d+gor)dv+/ (Tny - x +Hny-d — q - ny)da. (2.3)
Py

Py oRy

(2.1)



H. Stumpf, K. Hackl | International Journal of Solids and Structures 40 (2003) 15671584 1571

Here ¢(X, ) € R denotes the specific internal energy, (X, ¢) € R the specific kinetic energy, #(X,?) € R
the external body heating, and ¢(X,¢) € E the referential heat flux vector.
The specific kinetic energy for macro- and mesolevel is assumed in the form

1 1 ..
k(x,d) = Egok o EQoAd -d, (2.4)

where A is the microinertia tensor, which is independent of the mass. For simplicity, we assume that A is
time-independent. Macromomentum p and micromomentum m are related to the kinetic energy x as fol-

lows
oK oK .
=—_— =00, m=— =g,Ad. 2.5
P= i =@ T (2:5)

The balance laws (2.1)—(2.3) must be supplemented by the Clausius—Duhem inequality

i/ oo dv = / Gflrdv—/ 0'q-nyda (2.6)
dr 50 50 Py

regarded as an appropriate statement of the second law of thermodynamics. Here (X, ¢) € R is the specific
entropy and 6(X,¢) € R* the absolute temperature.

2.3. Local laws of micro-thermodynamics

Analogous to the classical theories of continuum thermodynamics, the laws of mechanics and ther-
modynamics on macro- and mesolevel are assumed to hold for every P C B. Under the usual regularity
requirements the classical local equations of macromotion follow from (2.1) (Marsden and Hughes, 1983,
p. 135)

Divl +b=p, TF' —FT" =0 (2.7)
and the local equations of micromotion follow from (2.2)
DivH -k + g =m, (2.8)

where p and m represent the rates of macro- and micromomenta (2.5). In (2.7) and (2.8) and subsequently
the gradient operator V = Grad and the divergence operator Div are defined with respect to the reference
configuration Bj.

Under the assumption that Egs. (2.7); and (2.8) are satisfied, the global energy balance (2.3) leads to the
rate of the internal energy

0 =T -F+k-d+H-Vd+ gy — Divg. (2.9)

The first term on the right-hand side of (2.9) may also be written as
.1 . )
T~F:§S-C:S-E, (2.10)

where S(X,¢) denotes the second Piola—Kirchhoff stress tensor, C(X,¢) the right Cauchy—Green defor-
mation tensor and E(X, ) the Green strain tensor (all being £ ® E-valued fields):
1
T=FS, C=F'F, E:E(C—l). (2.11)

With the assumption that the Clausius—Duhem inequality (2.6) is the appropriate form of the second law
of thermodynamics, the local dissipation inequality for macro- and mesolevel is obtained as
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G=T - F+k-d+H-Vd—¥ — g —0"q-V60>0. (2.12)
Here ¥(X, ) denotes the free energy function measured per unit volume of the reference configuration
¥ = g0 = 0o(e — O) (2.13)

and 2(X, 1) is the dissipation function.
2.4. General constitutive equations for damage process in thermo-viscoelastic material

Within the present micromechanical damage theory, the independent thermo-kinetic field variables are
(x,d, 0) corresponding to (x,F” 6) in a Lagrangean description of finite elastoplasticity (e.g. Schieck et al.,
1999). They must be determined as solution of the problem. The unknown dependent field variables are
(¥, T,k,H, 1, q), which must be given by constitutive equations in terms of the independent field variables
(x,d, 0). For thermo-viscoelastic damage, we assume the constitutive equations in the general form

¥ =¥(e V0, T=T(ef Vo),
k =Kk(e,f,V0), H=H(e,f,V0), (2.14)
n=i(e,£,V0), gq=gq(e,1,v0),

with the shortenings e = (F,d, Vd, 0) and f = (F,d, Ad).

The general constitutive equations (2.14) must be consistent with the balance law of angular momentum
(2.7), and the reduced dissipation inequality (2.12). Introducing the constitutive equations (2.14) into (2.12)
yields

G =(T —0p®) F+(k—0,P)-d+ (H—-0w?)-Vd
— (0ot + 0 P)0—07'G- VO -0, -F—0,¥-d— 0y ¥ - Vd — (0gy?) - VO > 0. (2.15)
Since the inequality (2.15) must be satisfied identically by all constitutive functions, it follows that
;7 =0, ;% =0 0,;¥=0 0y?=0. (2.16)

Thus the free energy density ¥ depends neither on the time derivative of the deformation gradient, F, of
the damage variable and its gradient, d, Vd, nor on the temperature gradient V0. Hence

¥ = ¥(e) = ¥(F,d, Vd,0). (2.17)

Moreover, from (2.15) it follows that the entropy # is determined by the constitutive equation of the free
energy:

2ol = 0pfi(e) = —0y P (e). (2.18)

Furthermore, as a consequence of inequality (2.15) we obtain also the result that the first Piola—
Kirchhoff stress tensor T, the microforce vector k and the microstress tensor H consist of two contribu-
tions, a non-dissipative and a dissipative one

T =T(e,§,V0) =0, () + T. (e, V0),
k =k(e,f,V0) =0, ¥ (e) + k. (e, f,V0), (2.19)
H=H(e,f,V0) = 0va ¥ (e) + H.(e,1,V0).

__ As it is seen the non-dissipative parts are determined by the constitutive form of the free energy function
¥ (e), while the dissipative parts, denoted by a lower asterisk, must be specified independently for each class
of material. In general, they must satisfy the reduced dissipation inequality
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=T, F+k -d+H, -Vd—0"¢g-V0>0. (2.20)

In (2.20) the first term represents the dissipation due to the driving macroforce, the second and third
term the dissipation due to evolving microdefects, and the fourth term the dissipation due to heat transfer.

Constitutive equations of the form (2.19), in less general form, were presented in Le and Stumpf (1996)
for finite elastoplasticity taking into account the dislocation motion. There, F” and VF?, representing
dislocations, correspond to d and Vd in the present micromechanical damage model.

The possible forms of the response functions (2.17)—(2.19) are further restricted by the principle of
frame-indifference. The simplest way to obtain frame-indifferent constitutive equations is to choose the
second Piola—Kirchoff stress tensor .S and the Green strain tensor E instead of T and F. Assuming also the
damage variables d(X,¢) in objective form, the standard procedures can be applied to show the frame-
indifference of the constitutive equations consisting of

¥ =Ye), e=(Ed, Vd0) (2.21)
together with

S =S8(e,f,V0) =0 ¥(e)+ S.(e,f,V0),

k =Kk(e,f,V0) = 03 ¥ (e) + k. (e, f, V0), (2.22)

H = H(e, f, V0) = 0vq ¥ (e) + H.(e, f,V0),
where f = (E,d, Vd), and

oo = aoii(e) = —0 ¥ (e), g =dqle.f,V0). (2.23)

With (2.21)—(2.23) the reduced dissipation inequality (2.20) takes the frame invariant form
7 =8.(e,1,V0)-E +k,(e,1,V0)-d+ H,(e,f,V0) - Vd — 07'g- VO > 0. (2.24)

As it is seen, the complete specification of the constitutive equations requires the determination of the
response functions ¥ (e), g(e, , V0), S.(e,f, V0), k.(e, f, VO) and H. (e, f, V0). In the case of dynamical
damage evolution, also the inertia tensor A of the moving microdefects must be determined by a constitutive
equation.

2.5. Dissipation pseudo-potential

The form of the reduced dissipation inequality (2.24) suggests to assume the existence of a dissipation
pseudo-potential of the general form

® = &(e,f,V0) (2.25)
such that the dissipative macro- and microforces, microstresses and the heat flux vector can be obtained as

S, =0;0(e,1,V0),

k, = 0;®(e, f,V0),

H, = 049 (e, f, V0),

07'qg = —0ve®(e,f,V0).

(2.26)

With (2.25) and (2.26) the general constitutive equations for macro- and microforces and microstresses
can be given as functions of the free energy potential ¥ and the dissipation pseudo-potential @
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S =S(e,1,V0) =0 (e) +0,®(e,f,V0),

k =k(e,f,V0) = 0¥ (e) + 0;® (e, f,V0),

H = H(e, f,V0) = 0yq ¥ (&) + 0y (e, f, V),
07'q = —0vy®(e,f,V0),

(2.27)

while the dissipation inequality (2.24) takes now the form
9 =0;®(e,f,V0) - E +0;P(e,f,V0) - d+ 03 P (e, f, V) - Vd + dyy @ (e, f, VO) - VO > 0. (2.28)

The advantage of the introduction of a dissipation pseudo-potential is obvious. Instead of specifying the
four response functions S.(e, f, V0), k. (e, f, V0), H, (e, f, V0) and (e, f, V0) independently, the choice of
one scalar-valued response function (2.25) determines completely the dissipative parts of the macro- and
microvariables. However, the existence of the dissipation pseudo-potential must be proved for each class of

problems.

2.6. Micromechanical damage theory

Introducing the constitutive equations (2.22) into the balance laws of macro- and microforces (2.7); and
(2.8), taking into account (2.5), the following system of coupled field equations for the analysis of the
damage evolution is obtained:

Div(Fog ¥(e) + FS. (e, f,V0)) + b = g,

- ~ ~ . . (2.29)

Div(0vqa ¥ (e) + H.(e,f,V0)) — 04 P (e) — k.(e, T, VO) + g = g,Ad
with the arguments e = (E,d, Vd, 0) and f = (E d, Vd). If for the problem under consideration there exists
a dissipation pseudo-potential @ (e, f, V) such that the constitutive equations (2.27) are valid, the gov-
erning equations (2.29) for the damage analysis are obtained as

Div(Fog ¥ (e) + Fo,® (e, f,V0)) + b = g i,

~ ~ ~ ~ . 2.30
Div(0vqa P (€) + 0y3 P (e, 1, VO)) —0a ¥ (e) — 0,P(e, 1, VO) + g = g Ad. (2.30)
Egs. (2.29) and (2.30), respectively, must be supplemented by appropriate boundary and initial condi-
tions. In the classical macrotheory, the boundary conditions at any point X € 0B, consist of prescribed
displacements or tractions or some suitable combination thereof. Here, we assume that there are two
disjoint, time independent subsets of 0B, such that the traction boundary condition is specified on the part
0By (analogous to the Neumann condition), while on the complementary part 058y, the kinematic boundary
condition is specified (analogous to the Dirichlet condition):

T(X,H)n(X) =t(X,1), (X,1)€0By xT,

2.31
wu(X,t)=u(X,t), (X,t)€0By, xT, (231)

where T = FS and u = x — X. The boundary conditions associated with the damage field d are formulated
in the same manner, i.e. on two complementary parts 0By, and 0By, = 0B, \ 0By of the boundary the
following conditions are assumed

H(X,)ny(X) =k*(X,1), (X,t) €0By x T,

d(X,)) =d"(X,7), (X,i) € 0By xT. (2.32)
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The initial conditions at time ¢ = 0 for all X € B are

x(XaO):x()(X)a X(X,O):Vo(X), 233
d(X,0) = do(X), d(X,0) = r(X). (233)

The fields marked in (2.31)—(2.33) by upper asterisks and lower index zero, respectively, are given
functions which must be specified for each class of initial-boundary value problems.

The presented Eqgs. (2.29)—(2.33) together with the local equation of energy balance (2.9) and appropriate
boundary and initial conditions for temperature and heat flux constitute the complete set of field equations
and initial and boundary conditions to define a damage evolution theory for thermo-viscoelastic bodies
subject to arbitrary dynamical loading. It provides a thermodynamically consistent framework for the
modeling of weakly nonlocal as well as local damage theories for thermo-viscoelastic and quasi-brittle
materials.

Simplifications of the general result are obtained by assuming

quasi-static deformation and quasi-static damage evolution: ¥ = 0, Ad = 0,

no chemical reactions breaking internal material bonds: g = 0,

isothermal process: VO = 0, (X, ¢) = const.,

isotropic damage described by a single scalar-valued damage parameter: d = (d,0,0).

Because of its importance for engineering applications the case of isotropic damage will be considered in
the following section for various classes of material properties. Analogous results can be derived also for
anisotropic damage (see Section 4.1).

3. Isotropic damage
3.1. Thermo-viscoelastic material

In the case of isotropic damage the process of degradation of material is described by a single scalar-
valued function d(X,¢) and its gradient by the vector-valued function Vd(X,¢) € E, where d may represent
e.g. the number of microcracks in a representative volume element and Vd is its spatial change. In this case
the balance law of microforces (2.8) with (2.5), reduces to the balance equation of scalar-valued microforces

Divh — k + g = g,4d. (3.1)

Here h(X,t) € E is the microstress vector work-conjugate to Vd, k(X,?) a scalar-valued microforce
work-conjugate to d, g(X,t) a scalar-valued chemical reaction, and 4(X) the microinertia coefficient as-
sociated with the dynamical microcrack evolution. It should be noted that the time-scale of chemical re-
actions is in general quite different from the time-scale of the thermodynamical process of damage.

With the shortenings e = (E,d,Vd,0) and f = (E,d,Vd), the free energy is given by a free energy
function ¥ = ¥ (e), and the constitutive equations (2.22) and (2.23) reduce to the form

S=0¥(e)+S.(ef,V0),
k=0,%(e)+ k. (e f,V0), (3.2)
h =0y, ¥(e) + h, (e f,V0)

and

0o = oofi(e) = —0 P (e), ¢ =q(e,f,V0). (3.3)
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If there exists a dissipation pseudo-potential ® = & (e, f, V), then the dissipative parts of the constitutive
equations (3.2) are given by

S.(e,1,V0) =0, P(e, f,V0),
k.(e,1,V0) = 0,®(e,f,V0), (3.4)
h.(e,f,V0) = 0., ®(e,f,V0)

and (3.3), by

07'q = —0vy®(e,f,V0). (3.5)
The dissipation inequality (2.24) reads for isotropic damage
7 =8.(e,1,V0)-E +k.(e,1,V0)d + h.(e,f,V0) - Vd — g(e,,V0) - VO >0 (3.6)
and
9 = 0;(e,f,V0) - E+0,d(e,f,V0)d + 0y, P (e, f,V0) - Vd + oy @(e, ,V0) - VO > 0, (3.7)
respectively.

The macro- and microbalance laws for isotropic damage evolution in thermo-viscoelastic material follow
from (2.29) as
Div(Fog F’(e) +~FS'*(e, f,v0)) + 11 = Qox,~ " 58)
Div(0y, ¥ (e) + h.(e,f,V0)) — 0, ¥ (e) — k.(e, f,VO) + g = 0,4d
and corresponding equations, if the constitutive relations (3.4) are valid.

3.2. Isothermal process

3.2.1. Quasi-brittle and elastic materials
For isothermal process the space gradient of temperature vanishes, VO = 0. Consequently, the heat flux
vector vanishes according to (3.5), ¢ = 0, and the constitutive equations (3.2) reduce to the form

S=0;P(e)+S.(e,f), k=0,7()+k(ef), h=0vwP(e) +h(ef (3.9)

with e = (E,d, Ad) and f = (E,d, Vd). These constitutive equations include rate effects of the macrostrains
and of the damage variables. However, in the damage analysis of quasi-brittle materials such as concrete
and ceramics rate effects can often be neglected so that further simplifications of the constitutive equations
(3.9) are possible. ~

We assume that the dissipative parts of the second Piola-Kirchhoff stress tensor, S., and of the micro-
stress vector, h,, are small and can be neglected:

S.(e,f) =0;®(e,f) =0, h.(ef)=0dy,d(ef) =0, (3.10)
leading to the constitutive equations
S=0:¥(e), h=0v,¥(e). (3.11)

However, even for quasi-brittle material we cannot neglect the dissipative part of the intrinsic microforce
k. Thus, with (3.9), we have

k=0,9(e)+k. (e, E,d Vd). (3.12)
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Then, the dissipation inequality (3.6) reduces to the form
7 =k.(e,E,d,Vd)d > 0. (3.13)

From (3.13) the following general restriction for the dissipative part of the intrinsic microforce is ob-
tained:

k.(e,E,d,Vd) >0, (3.14)

whenever d > 0, i.e. the damage increases. The case 51 < 0 is considered to be physically not realistic.
If there exists a dissipation pseudo-potential @ = & (e, E,d, Vd) such that

k.(e,E,d,Vd) = 0,9(e, E d,Vd), (3.15)
then the dissipation inequality (3.13) takes the form
9 =0,®(e,E,d,Vd)d > 0. (3.16)

The restrictions (3.14) and (3.16), respectively, are direct consequences of the reduced dissipation in-
equality, which in turn was derived as implication of the Clausius-Duhem inequality (2.12).

A further specification can be obtained, if we assume that the driving microforce k, (e, E,d,Vd) for
quasi-brittle and elastic material is homogeneous of degree one with respect to E, d and Vd. Hence, its
general form can be written as

k.(e,E d,Vd) = #(e) — €(e)d + L(e) - E+ #(e) - Vd. (3.17)

Here, #(e), ¥(e) are scalar-valued, #(e) vector-valued, and L(e) tensor-valued functions of e =
(E,d,Vd). With (3.17) the constitutive equation (3.12) for intrinsic microforce takes the form

k=0,%(e)+ A(e) —6(e)d+Le)-E+ #(e)-Vd. (3.18)

A slightly different, but for later considerations appropriate constitutive form of the microforce & is
obtained by assuming that instead of its dissipative part (3.17) k.(e, E,d, Vd) can be represented as

k.(e,E,d Vd) = B(e) — 6(e)d + £ (e)é(E) + #(e) - Vd (3.19)
with % and & scalar-valued constitutive functions. Then, the microforce (3.18) takes the form

k=—%(e)d + Z(e)é(E) + #(e) - Vd+ W (e) (3.20)
with

W(e)=0,%(e)+ B(e). (3.21)
Assuming that & = &(E) is differentiable, then &(E) = 0z&(E) - E and hence

Z(e)é(E) = L(e)opé(E) - E. (3.22)

A comparison of (3.17) with (3.19) leads to the representation L(e) = ¥ (e)0gé(E), which is used in the
next section to specify the microforce k.

3.2.2. Isotropic elastic material

If the material possesses some symmetries in its physical structure further specifications of the constitu-
tive response functions are possible. Such properties are defined in terms of material symmetry groups
(Truesdell and Noll, 1965). For isotropic material, the symmetry group is the full orthogonal group O(E).
In this case, the combined restrictions due to material frame-indifference and material symmetry imply that
the free energy response function ¥ (E,d, Vd) is an isotropic function of its arguments. Accordingly, by the
classical representation theorem of tensor functions (e.g. Truesdell and Noll, 1965), ¥(e) = ¥ (E,d,Vd)
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depends on E and Vd only through the joint invariants of E and Vd consisting of three principal invariants
11, b, 13 of E defined by

1
L =tE, L= E{(trE)Z —tr(E?)}, L =detE (3.23)
and three additional joint invariants Iy, Is, I defined by

I,=Vd-Vd, Is=Vd-EVd, I,=Vd-EVd. (3.24)

Thus, the constitutive form of the free energy ¥ = l17/(E ,d,Vd) for finite strains E and arbitrary vectors
Vd is

Y =dij), i=,hL), i=lsl), (3.25)
leading with (3.11) to the constitutive equations for the stress tensor S and the microstress vector /

S = (Wi + LWy + L)1 + (Ws — LWA)E + WAE? + Ws(Vd © Vd) + We(EVd © Vd + Vd © EVd)

(3.26)
and
h = 2(W1 + WiE + W,E*)Ad, (3.27)
where
W, = W,(d,i,j) =0%(d,i,j)/ol, o=1,...6. (3.28)
The constitutive equation for the microforce & according to (3.20) and (3.21) is obtained as
k=—%(d,i,j)d+ L(d,i,§)EGR) + A#(d,1,]) - Vd+w(d,i,]) (3.29)
with
W(d,1,]) = 0,9 (d,i,1) + Bd, i), (3.30)

where i and | stand for the lists of invariants defined in (3.25). Moreover, the time derivative of & = &(1) is
given by

& = (0,61 + (0,8 + (0,6)I. (3.31)
Noting that the invariants i = (I;, 5, /;) are defined by (3.23) it is not difficult to show that

I=1-E, L=(I1-E)-E, IL=(Ll-LE+E")-E. (3.32)
Substituting (3.32) into (3.31) yields

& = {(E\ + LLEy + LE)1 — (E; + LE;)E + E;E*} - E, (3.33)

where E;, =06 /0I, k = 1,2,3. }
Similar relations can be derived also if the dissipative part of the microforce &, according to (3.19) is
given in terms of a pseudo-dissipation potential.

3.2.3. Application of the strain equivalence hypothesis

Essential simplifications of the constitutive equations are obtained by assuming a specific form of the
free energy function ¥ (E,d,Vd) and ¥(d,i,]), respectively. A simple model of this kind, which never-
theless encompasses a wide class of brittle materials, is described by a free energy function of the form

¥ = Y(E,d,Vd) = (1 —d)¥°(E) + ¥(Vd), (3.34)
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where P (E) is identified with the free energy of the undamaged elastic material, and ¥(Vd) represents that
contribution to the free energy resulting from weakly non-local interactions. The assumption (3.34), which
can be regarded as a weakly non-local generalization of the so-called strain equivalence hypothesis, yields
the constitutive equations for the stress tensor § and the microforce vector & according to (3.11) in the form

S =(1-d)ogP(E), h=0y,P(Vd). (3.35)
Assuming that in (3.20) the term #(e) - Vd can be neglected the microforce k is obtained as
k=—%(e)d + Z(e)&(E) + W (e) (3.36)
with
W (e) = —V'(E) + %(e) (3.37)

and e = (E,d,Vd). B
For isotropic elastic material behavior, ¥° and ¥ and the constitutive functions appearing in (3.36) must
be isotropic functions of their arguments. Thus
YO =¥, 0, L), Y=Y, (3.38)

where the invariants are defined by (3.23) and (3.24),. From (3.26) and (3.27), it follows that in the case of
isotropic material behavior the constitutive equations (3.35) reduce to the form

S=(1—-d) (N + LW + L)1+ (W, — LWY)E + WE? (3.39)
and

h=0y,P(Vd) =2W,1Vd, (3.40)
where

Wl =0ov' (I, L, ) /oL, i=1,2,3, W,=0%(l)/dl. (3.41)

Moreover, the constitutive equation (3.36) takes the form

k=—%(d,i,j)d+ L(d,i§)éEG) + 7 (d,i,]) (3.42)
with

W(d,i,§) = =¥Y'(I, b, 15) + B(d, i, ). (3.43)

3.2.4. Small strain assumption
Under the assumption of small strains the free energy of the undamaged material ¥ is given by the
quadratic form

PO(E) = %{ZMtr(Ez) + A(trE)*} (3.44)

with the Lamé coefficients 1 and p, and the Green strain tensor E, which for small strains can be identified
also with the linear strain tensor. In (3.38), the invariant W, according to (3.41), is constant leading to the
weakly non-local energy contribution

P(Vd) = %KVd .Vd (3.45)

and the constitutive equations for the second Piola—Kirchhoff stress tensor S and the microstress vector A

S = (1 —d){2uE + A(ttE)1}, h=KVd. (3.46)
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For small strains essential simplifications can also be introduced in the constitutive equation for the
microforce £ due to (3.42). We may assume that % is independent of Vd, that ¥ depends on E only through
&(E), and that §(E) and #(E) are independent of Vd:

€¢(d,E)=0, Z(d,E)=%(d,6()), #=%BdE). (3.47)
Then the constitutive equation (3.42) with (3.43) reduces to the form

k=—%(d E)d+ %(d,E)&(E)+ W (d,E) (3.48)
with

W (d,E) =~V (E) + #(d,E). (3.49)

For isothermal process with VO =0 and isotropic elastic material behavior and applying the strain
equivalence hypothesis the balance laws of macro- and microforces (3.8) lead to

Div(FS) + b = g%,

. (3.50)
Divh — k + g = g,Ad

with the constitutive equations for S, & and & given by (3.46)—(3.49) and an additional constitutive equation
for the scalar-valued inertia function 4. Together with corresponding boundary and initial condition
equations (3.50) define a weakly nonlocal and gradient, respectively, model for isotropic damage valid
under the assumptions specified above. To construct a FE solution algorithm, we have to formulate a
virtual work principle as weak solution of (3.50).

The gradient damage model of Frémond and Nedjar (1996) and Pires-Domingues et al. (1999) is ob-
tained from Egs. (3.50) and their weak form, if the damage evolution is quasi-static, ¥ = 0, d = 0, chemical
reactions can be neglected, g = 0, and the following additional constitutive assumptions are valid:

® %(d,E)=C>0is a constant,
e #(d,E)=0,
e W (d,E) =W is a constant,

yielding an isotropic damage model with five and six, respectively, material parameters, u, 4, K, C and W
determined experimentally for concrete by Frémond and Nedjar (1996).

4. Anisotropic damage
4.1. One-field modeling

In Section 2 we introduced a set d = (d, d, D) of scalar-, vector- and tensor-valued functions to describe
damage phenomena. In this subsection, it is assumed that anisotropic damage can be defined by an aniso-
tropy tensor D

d=(0,0,D). (4.1)

In this case, the derivation of anisotropic damage theories can follow the specification and simplification
procedure outlined in detail in Section 3 for isotropic damage, so we do not need to repeat it here.

In the literature a one-field anisotropic gradient damage model is proposed by Marshall et al. (1991),
where the anisotropy of damage is described by a vector-valued function. In effect, the theory of Marshall
et al. follows from the general theory of Section 2 as special case, if we choose d = (0,4d,0).
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4.2. Two-field modeling

In this subsection, we assume that anisotropic damage phenomena can be described by a scalar d and a
tensor D, so that the set of damage variables introduced in Section 2 is

d=(d,0,D) (4.2)
with the gradients
Vd = (Vd,0,VD). (4.3)

Assuming for simplicity quasi-static isothermal processes the balance law of macroforces follows from
(2.7), as

Div(FS)+b=0 (4.4)
and the balance laws of microforces from (2.8) as

Divh—k+g=0, (4.5)

Div# — K+ G =0, (4.6)

where the microforce & is power-conjugate to d, K power-conjugate to D, and the microstresses & and #
power-conjugate to Vd and VD, respectively.

For many damage problems of engineering interest, it can be assumed that the gradient of the anisotropy
tensor D is small and can be omitted in the list of constitutive variables. Thus, under the assumption
VD =0, we have # = 0 so that Eq. (4.6) reduces to the form

-K+G=0. (4.7
Moreover, the free energy (2.21) satisfying the dissipation inequality (2.15) is given by
Y= ¥(e,D), e=(Ed Vd) (4.8)

and the constitutive equations for macrostress S, microforces k£ and K, and microstress & by
S =0%(e,D) + S.(e,D, e, D),
k=203,%(e,D)+k.(e,D,eé D),

_ : (4.9)
K=0p¥(e,D)+ K.(e,D,e&, D),
h=03y,¥(e,D)+h.(e,D,eé D).
Here e = (E7 d, Vd). The dissipation inequality (2.24) takes now the form
9 =S, Etkd+h -Vd+K-D>0. (4.10)

Introducing the constitutive equations (4.9) into (4.4)—(4.6), we obtain the governing equations for quasi-
static deformation and two-field anisotropic damage evolution

Div(Fog ¥ (e, D) + FS.(e,D,é,D)) + b =0, (4.11)
Div(dvs ¥ (e, D) + h,(e,D, &, D)) — 0, ¥ (e, D) — k.(e,D, e, D) + g =0, (4.12)

—0pP(e,D)—K.(e,D,é,D)+ G =0. (4.13)
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It should be noted that (4.11) and (4.12) are partial differential equations, while (4.13) is an ordinary
differential equation. This simplification was obtained by omitting VD in the list of arguments of the
constitutive equations. In effect, Eq. (4.13) represents the damage evolution law for D in implicit form.

Assuming that the microforce K, power-conjugate to D is homogeneous of first degree in D, we can write

K.(e,D,&,D)=A(e,D)D+ C(e,D,¢) (4.14)

with A a fourth-order and C a second-order constitutive tensor. Introducing (4.14) into the balance law of
microforces (4.13) leads to

—0p¥(e,D) — A(e,D)D — C(e,D, &) + G = 0. (4.15)

If the fourth-order tensor A(e, D) is non-singular, then the damage evolution law for the anisotropy
tensor D is obtained as

D=A(e,D) ' (G—03p¥(e,D)— C(e,D,e)). (4.16)

As a result, for quasi-static and isothermal process, the anisotropic damage evolution is described by
Egs. (4.11)—(4.16), if VD can be neglected. Appropriate simplifications of the constitutive functions can be
obtained following the ideas outlined in Section 3.

Assuming furthermore that also Vd can be neglected—in general an incorrect assumption in the case of
damage localization—Ilocal theories of anisotropic damage are obtained. In the literature a local model of
anisotropic damage was presented by Murakami and Kamiya (1997) using a scalar and a tensor variable.

5. Conclusions

A thermodynamically consistent micromechanical theory for the analysis of damage evolution in
thermo-viscoelastic and quasi-brittle materials is presented. It can be considered as a framework for the
modeling of weakly nonlocal and gradient, respectively, damage theories. The main features can be sum-
marized as follows.

e To describe isotropic and anisotropic damage, kinematical damage variables of scalar-, vector- and ten-
sor-type are introduced.

e The theory is based on balance laws of macro- and microforces and first and second law of thermo-
dynamics formulated for macro- and mesolevel.

e Inertia and kinetic energy of evolving microdefects and chemical reactions breaking internal material
bonds are taken into account.

e General constitutive equations are formulated. From the Clausius—Duhem inequality it follows that the
macro- and microforces consist of non-dissipative and dissipative parts. The dissipative microforces can
be considered as driving forces on microdefects causing their motion.

e For isotropic damage the constitutive equations for various classes of material properties and process
data are discussed in detail.

e For anisotropic damage described by a scalar and a tensor function, simplified gradient theories can be
obtained, if the gradient of the anisotropy tensor can be neglected.

Further research work should be devoted to the determination of the constitutive functions for specified
classes of material properties and process data and to the implementation of FE solution algorithms for
gradient damage models.
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