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Abstract

The aim of this paper is to develop a thermodynamically consistent micromechanical concept for the damage analysis

of viscoelastic and quasi-brittle materials. As kinematical damage variables a set of scalar-, vector-, and tensor-valued

functions is chosen to describe isotropic and anisotropic damage. Since the process of material degradation is governed

by physical mechanisms on levels with different length scale, the macro- and mesolevel, where on the mesolevel

microdefects evolve due to microforces, we formulate in this paper the dynamical balance laws for macro- and micro-

forces and the first and second law of thermodynamics for macro- and mesolevel.

Assuming a general form of the constitutive equations for thermo-viscoelastic and quasi-brittle materials, it is shown

that according to the restrictions imposed by the Clausius–Duhem inequality macro- and microforces consist of two

parts, a non-dissipative and a dissipative part, where on the mesolevel the latter can be regarded as driving forces on

moving microdefects. It is shown that the non-dissipative forces can be derived from a free energy potential and the

dissipative forces from a dissipation pseudo-potential, if its existence can be assured.

The micromechanical damage theory presented in this paper can be considered as a framework which enables the

formulation of various weakly nonlocal and gradient, respectively, damage models. This is outlined in detail for isotropic

and anisotropic damage.
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1. Introduction

Local damage models for brittle and ductile materials were extensively discussed in the literature (e.g.

Kachanov, 1958, 1986; Ortiz, 1985; Simo and Ju, 1987; Chaboche, 1988; Lemaitre, 1992; Krajcinovic,
1996). In local phenomenological theories, the damage parameters are considered as internal variables, for

which evolution laws have to be given. Besides the fact that it is difficult to determine appropriate damage

evolution laws, the FE-solutions based on local damage theories suffer from strong mesh-dependency, if

problems with damage localization are analyzed. Also it was observed that the so-called size effect of

International Journal of Solids and Structures 40 (2003) 1567–1584

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +49-234-32-2-73-85; fax: +49-234-32-1-41-54.

E-mail address: stumpf@am.bi.ruhr-uni-bochum.de (H. Stumpf).

0020-7683/02/$ - see front matter � 2002 Published by Elsevier Science Ltd.

PII: S0020-7683 (02 )00643-1

mail to: stumpf@am.bi.ruhr-uni-bochum.de


structures cannot be simulated by local damage models (cf. Ba�zzant and O�zzbolt, 1990; Ba�zzant and Planas,

1998). The reason for these difficulties lies in the fact that material degradation during the lifetime of

structures is governed by physical mechanisms on levels with different length scale, the macro- and meso- or

microlevel. In brittle material microcracks and microvoids and in ductile material microvoids, micro-
shearbands and dislocations are observed, which can evolve relative to the surrounding material.

To overcome the numerical difficulties associated with the application of FE-solution methods, based on

local damage theories, integral enhancement (e.g. Ba�zzant and Pijaudier-Cabot, 1988; Ba�zzant, 1991) and
gradient enhancement (e.g. de Borst et al., 1996; Kuhl et al., 2000; Geers et al., 2000) were introduced into

local damage models. Also, applying local models of finite elastoplasticity, strong mesh-dependency of the

FE-solutions is observed, if localization of the plastic deformation occurs (e.g. Roehl and Ramm, 1996;

Miehe, 1998; Schieck et al., 1999). Here also, gradient-enhanced models of plasticity were proposed (e.g. de

Borst and M€uuhlhaus, 1992). These models can be considered as phenomenological theories with weakly
nonlocal enhancement: damage and plasticity variables are treated as internal variables, for which evolu-

tion laws have to be assumed, and strain or hardening parameters are enhanced by second gradient terms.

To model the material behavior on levels with different length scale a quite different approach is applied

e.g. in Capriz, 1989; Marshall et al., 1991; Naghdi and Srinivasa, 1993; Fried and Gurtin, 1994; Le and

Stumpf, 1996 and Fr�eemond and Nedjar, 1996. In these papers theories are investigated, where besides the

balance laws of macroforces also balance laws of microforces are formulated. To model the material be-

havior on levels with different length scale taking into account discontinuous fields of defects a six-

dimensional kinematical concept with non-Euclidean space structure is introduced in Stumpf and Saczuk,
2000 and Saczuk et al., 2001. There, balance laws of macroforces and microforces are derived applying a

variational formulation. Rakotomanana (2002) presents a kinematical theory of continua with discontin-

uous fields of defects on the mesolevel. As application he investigates the measuring of the loss in an ul-

trasonic signal due to propagation through defected in situ structures.

Thermodynamically consistent frameworks for a damage analysis published in the literature so far are

mainly devoted to phenomenological theories, where the fields of plasticity and damage are treated as

internal variables, for which evolution laws have to be postulated (e.g. Hansen and Schreyer, 1994; Arnold

and Saleeb, 1994; Li, 1999). In Svedberg and Runesson (1997) the internal variable approach is investigated
for isothermal plasticity with coupling to isotropic damage, where for regularization reason a gradient-

enhancement of the isotropic hardening parameter is introduced.

The aim of this paper is to present a thermodynamically consistent micromechanical concept for the

analysis of isotropic and anisotropic damage evolution in thermo-viscoelastic and quasi-brittle materials.

Since our goal is the modeling of consistent damage theories simple enough to construct appropriate FE

solution algorithms and to analyze the degradation of engineering structures, we use an Euclidean space

concept with classical gradient operator. To take into account anisotropic damage a damage variable of

scalar-, vector- and tensor-type or any combination thereof is introduced (see also Krajcinovic, 1998). Since
the degradation of material is essentially caused by nucleation and evolution of microdefects as micro-

cracks, microvoids and dislocations on a mesolevel, and this evolution of the microdefects is caused by

microforces, we formulate dynamical balance laws for macro- and microforces and the first and second law

of thermodynamics for the macro- and mesolevel. Microdefects move relative to the surrounding mass.

Therefore, in the dynamical balance laws for microforces we take into account the rate of micromomentum

and in the balance law of energy the kinetic energy of moving microdefects, both independent of the mass.

For thermo-viscoelastic material behavior, we assume the constitutive equations for macro- and mi-

croforces and heat transfer in general form. It is then shown that from the restrictions imposed by the
Clausius–Duhem inequality, macro- as well as microforces consist of two parts, a non-dissipative and a

dissipative part. On the mesolevel the latter represent the driving forces on microdefects causing their

dissipative evolution. Corresponding to the split of macro- and microforces into non-dissipative and dis-

sipative parts, the constitutive equations can be represented via a free energy potential and a dissipation
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pseudo-potential, if the latter exists. Then, from the free energy potential the non-dissipative forces and

from the dissipative pseudo-potential the dissipative driving forces follow.

Considering the presented micromechanical damage theory as a framework, various weakly nonlocal

and gradient, respectively, isotropic and anisotropic damage models can be derived. For numerical ap-
plications of special importance are anisotropic damage models, where the gradients of some damage

variables can be neglected. In this case, the corresponding balance laws of microforces lead directly to

evolution laws for these damage variables.

The organization of the paper is as follows.

In Section 2, the micromechanical modeling of damage phenomena is investigated by formulating dy-

namical balance laws of macro- and microforces and the first and second law of thermodynamics for

macro- and mesolevel. Constitutive equations for thermo-viscoelastic and quasi-brittle materials coupled

with damage are assumed in general form, where the constitutive restrictions follow from the Clausius–
Duhem inequality. It is shown that macro- and microforces consist of two parts, a non-dissipative and a

dissipative part. Introducing the constitutive equations into the balance laws of macro- and microforces

leads to the governing equations of dynamical defect evolution.

In Section 3, the isotropic damage described by a scalar function is investigated for various classes of

material properties and process data. In Section 4, we consider the case of anisotropic damage. If the

anisotropy is described by an anisotropy tensor, then the procedure of specification and simplification

outlined for isotropic damage in Section 3 can be applied correspondingly. In the case of an anisotropic

damage description with a scalar and an anisotropy tensor, it is often possible to assume that the gradient
of the anisotropy tensor can be neglected, while the gradient of the scalar function has to be taken into

account. It is shown that in this case the evolution law for the anisotropy tensor can be derived directly

from the corresponding balance law of microforces.

2. Micromechanical modeling of damage phenomena

The following notation scheme is used. The three-dimensional Euclidean point space is denoted by E and
the associated translation space (the three-dimensional Euclidean vector space) by E. Moreover, vectors are

denoted by lower case bold letters and multilinear operators (tensors) by upper case bold letters. Whenever

finite dimensional vector spaces are considered we shall identify the tensor product vector space F � E with

the vector space LðE; F Þ of all linear maps of the vector space E into any other inner product vector space F .
We write u � w for the inner product of vectors regardless of the vector space in question. We also recall that

the inner product of two tensors (linear maps) A;B 2 LðE; F Þ is defined by A � B ¼ trðATBÞ, where

AT;BT 2 LðF ;EÞ and ‘‘tr’’ denotes the trace of the tensor.

2.1. Damage variables and kinematics of damaged bodies

For the purpose of this paper, the material body under consideration may be identified with a region
B0 � E in the physical space, which the body occupies in a fixed reference configuration. The motion of the

body is then described by a mapping v : B0 � T ! E, which carries each material particle X 2 B0 into its

place x ¼ vðX; tÞ in the spatial configuration BðtÞ ¼ vðB0; tÞ of the body at time instant t, where T denotes

the underlying time interval. Once the mapping v is specified, all kinematic variables on the macrolevel such

as velocity, deformation gradient, strain tensors, etc., are defined in the standard manner (Truesdell and

Noll, 1965).

To account for the physical mechanisms underlying the damage process on macro- and mesolevel, a

reformulation of the kinematical concept and of some principles of classical continuum thermomechanics is
required. On the macroscale, the damage process is described by introducing certain damage variables,
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which can be viewed as macroscopic measures of the internal degradation of the material. In this paper, we

shall assume that the state of damage in a material can be characterized by a damage variable dðX ; tÞ of any
nature (scalar, vector or tensor). We also admit that d may represent an ordered collection of any number

of damage variables possibly of different nature, e.g. d 
 ðd; d;DÞ consisting of a scalar d, a vector d, and a
second rank tensor D. For definiteness and proper mathematical setting, we assume that d : B0 � T ! F ,
where F is a finite-dimensional inner product vector space (e.g. R, �pE or �pE for some pP 1,

R� E � ðE � EÞ, etc.) and we shall refer to F as a ‘‘damage space’’.

2.2. Integral laws of mechanics and thermodynamics on macro- and mesolevel

Experimentally observed progressive degradation of mechanical and thermal properties of continua is

governed by physical mechanisms observed on levels with different length scale, on macro-, meso-, and
microlevel, respectively. In brittle material there can be microdefects as microcracks and microvoids, in

ductile material microvoids, dislocations and microshearbands. While the precise physical nature of the

microdefects can be difficult to identify for a specific material, it is obvious that the nucleation and evo-

lution of the microdefects are caused by forces on the mesolevel. This suggests to postulate additional

balance laws for microforces, besides the classical balance laws of forces on the macrolevel. Within such

two-level modeling of damage phenomena the first and second law of thermodynamics have to be modified

taking into account the contributions from the mesolevel.

We assume that the referential mass density .0ðXÞ is independent of time. The balance laws of ma-
cromomentum and angular macromomentum can be given as

d

dt

Z
P0

pdv ¼
Z
P0

bdvþ
Z
oP0

Tn0 da;

d

dt

Z
P0

x� pdv ¼
Z
P0

x� bdvþ
Z
oP0

x� Tn0 da:
ð2:1Þ

Here pðX ; tÞ 2 E denotes the macromomentum, bðX ; tÞ 2 E the classical body force, TðX ; tÞ 2 E � E the

first Piola–Kirchhoff stress tensor, x ¼ vðX ; tÞ the place of a material point in the actual configuration, and

n0ðXÞ the outward unit normal vector to the boundary oP0 of a subdomain P0 � B0.

To formulate the balance law of microforces, we assume that the microdefects are characterized by a

‘‘damage’’ field d : B0 � T ! F and that at each time instant the stress state on the mesolevel may be

characterized by an intrinsic microforce kðX ; tÞ 2 F , an extrinsic microforce gðX ; tÞ 2 F representing e.g.

chemical reactions breaking internal material bonds, and a microstress tensor HðX; tÞ 2 F � E. Then, the
balance of microforces can be given as

d

dt

Z
P0

mdv ¼
Z
P0

ð
kþ gÞdvþ
Z
oP0

Hn0 da: ð2:2Þ

Evolving microdefects have no mass but they have inertia. This effect is included in the present theory

through the micromomentum mðX ; tÞ. We have to point out that the integration of the terms in (2.2) has to
be performed over the same subdomain P0 � B0 and the boundary surface oP0 as in (2.1).

Besides the balance laws for macro- and microforces we have to formulate the first law of thermo-

dynamics on macro- and mesolevel taking into account also the kinetic energy of evolving defects, the

contribution of the extrinsic microforce g in the interior of P0 and of the surface microforce Hn0 on the

surface oP0

d

dt

Z
P0

ð.0e

�
þ jÞdv

�
¼

Z
P0

ðb � _xxþ g � _ddþ .0rÞdvþ
Z
oP0

ðTn0 � _xxþHn0 � _dd
 q � n0Þda: ð2:3Þ
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Here eðX ; tÞ 2 R denotes the specific internal energy, jðX ; tÞ 2 R the specific kinetic energy, rðX ; tÞ 2 R

the external body heating, and qðX ; tÞ 2 E the referential heat flux vector.

The specific kinetic energy for macro- and mesolevel is assumed in the form

jð _xx; _ddÞ ¼ 1

2
.0 _xx � _xxþ 1

2
.0A

_dd � _dd; ð2:4Þ

where A is the microinertia tensor, which is independent of the mass. For simplicity, we assume that A is

time-independent. Macromomentum p and micromomentum m are related to the kinetic energy j as fol-

lows

p ¼ oj
o _xxj _dd

¼ .0 _xx; m ¼ oj

o _ddj _xx
¼ .0A

_dd: ð2:5Þ

The balance laws (2.1)–(2.3) must be supplemented by the Clausius–Duhem inequality

d

dt

Z
P0

.0gdvP
Z
P0

h
1rdv

Z
oP0

h
1q � n0 da ð2:6Þ

regarded as an appropriate statement of the second law of thermodynamics. Here gðX ; tÞ 2 R is the specific
entropy and hðX ; tÞ 2 Rþ the absolute temperature.

2.3. Local laws of micro-thermodynamics

Analogous to the classical theories of continuum thermodynamics, the laws of mechanics and ther-

modynamics on macro- and mesolevel are assumed to hold for every P � B. Under the usual regularity

requirements the classical local equations of macromotion follow from (2.1) (Marsden and Hughes, 1983,

p. 135)

DivT þ b ¼ _pp; TFT 
 FTT ¼ 0 ð2:7Þ

and the local equations of micromotion follow from (2.2)

DivH
 kþ g ¼ _mm; ð2:8Þ

where _pp and _mm represent the rates of macro- and micromomenta (2.5). In (2.7) and (2.8) and subsequently

the gradient operator r 
 Grad and the divergence operator Div are defined with respect to the reference

configuration B0.

Under the assumption that Eqs. (2.7)1 and (2.8) are satisfied, the global energy balance (2.3) leads to the

rate of the internal energy

.0 _ee ¼ T � _FF þ k � _ddþH � r _ddþ .0r 
Divq: ð2:9Þ

The first term on the right-hand side of (2.9) may also be written as

T � _FF ¼ 1

2
S � _CC ¼ S � _EE; ð2:10Þ

where SðX ; tÞ denotes the second Piola–Kirchhoff stress tensor, CðX ; tÞ the right Cauchy–Green defor-

mation tensor and EðX ; tÞ the Green strain tensor (all being E � E-valued fields):

T ¼ FS; C ¼ FTF; E ¼ 1

2
ðC 
 1Þ: ð2:11Þ

With the assumption that the Clausius–Duhem inequality (2.6) is the appropriate form of the second law
of thermodynamics, the local dissipation inequality for macro- and mesolevel is obtained as
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D 
 T � _FF þ k � _ddþH � r _dd
 _WW 
 .0g _hh 
 h
1q � rhP 0: ð2:12Þ
Here WðX ; tÞ denotes the free energy function measured per unit volume of the reference configuration

W 
 .0w ¼ .0ðe 
 hgÞ ð2:13Þ
and DðX ; tÞ is the dissipation function.

2.4. General constitutive equations for damage process in thermo-viscoelastic material

Within the present micromechanical damage theory, the independent thermo-kinetic field variables are

ðx; d; hÞ corresponding to ðx;Fp; hÞ in a Lagrangean description of finite elastoplasticity (e.g. Schieck et al.,

1999). They must be determined as solution of the problem. The unknown dependent field variables are

ðW;T; k;H; g; qÞ, which must be given by constitutive equations in terms of the independent field variables
ðx; d; hÞ. For thermo-viscoelastic damage, we assume the constitutive equations in the general form

W ¼ bWWðe; f;rhÞ; T ¼ bTT ðe; f;rhÞ;
k ¼ k̂kðe; f;rhÞ; H ¼ bHHðe; f;rhÞ;
g ¼ ĝgðe; f;rhÞ; q ¼ q̂qðe; f;rhÞ;

ð2:14Þ

with the shortenings e ¼ ðF; d;rd; hÞ and f ¼ ð _FF; _dd;D _ddÞ.
The general constitutive equations (2.14) must be consistent with the balance law of angular momentum

(2.7)2 and the reduced dissipation inequality (2.12). Introducing the constitutive equations (2.14) into (2.12)
yields

D ¼ ðbTT 
 oF bWWÞ � _FF þ ðk̂k
 od bWWÞ � _ddþ ð bHH 
 ord
bWWÞ � r _dd


 ð.0ĝg þ oh
bWWÞ _hh 
 h
1q̂q � rh 
 o _FF

bWW � €FF 
 o _dd
bWW � €dd
 or _dd

bWW � r€dd
 ðorh
bWWÞ � r _hh P 0: ð2:15Þ

Since the inequality (2.15) must be satisfied identically by all constitutive functions, it follows that

o _FF
bWW ¼ 0; o _dd

bWW ¼ 0; or _dd
bWW ¼ 0; orh

bWW ¼ 0: ð2:16Þ
Thus the free energy density W depends neither on the time derivative of the deformation gradient, _FF, of

the damage variable and its gradient, _dd, r _dd, nor on the temperature gradient rh. Hence

W ¼ bWWðeÞ ¼ bWWðF; d;rd; hÞ: ð2:17Þ
Moreover, from (2.15) it follows that the entropy g is determined by the constitutive equation of the free

energy:

.0g ¼ .0ĝgðeÞ ¼ 
oh
bWWðeÞ: ð2:18Þ

Furthermore, as a consequence of inequality (2.15) we obtain also the result that the first Piola–

Kirchhoff stress tensor T, the microforce vector k and the microstress tensor H consist of two contribu-

tions, a non-dissipative and a dissipative one

T ¼ bTT ðe; f;rhÞ ¼ oF bWWðeÞ þ bTT �ðe; f;rhÞ;
k ¼ k̂kðe; f;rhÞ ¼ od bWWðeÞ þ k̂k�ðe; f;rhÞ;
H ¼ bHHðe; f;rhÞ ¼ ord

bWWðeÞ þ bHH�ðe; f;rhÞ:

ð2:19Þ

As it is seen the non-dissipative parts are determined by the constitutive form of the free energy functionbWWðeÞ, while the dissipative parts, denoted by a lower asterisk, must be specified independently for each class

of material. In general, they must satisfy the reduced dissipation inequality
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D ¼ bTT � � _FF þ k̂k� � _ddþ bHH� � r _dd
 h
1q̂q � rhP 0: ð2:20Þ

In (2.20) the first term represents the dissipation due to the driving macroforce, the second and third

term the dissipation due to evolving microdefects, and the fourth term the dissipation due to heat transfer.

Constitutive equations of the form (2.19), in less general form, were presented in Le and Stumpf (1996)

for finite elastoplasticity taking into account the dislocation motion. There, Fp and rFp, representing
dislocations, correspond to d and rd in the present micromechanical damage model.

The possible forms of the response functions (2.17)–(2.19) are further restricted by the principle of

frame-indifference. The simplest way to obtain frame-indifferent constitutive equations is to choose the

second Piola–Kirchoff stress tensor S and the Green strain tensor E instead of T and F. Assuming also the

damage variables dðX; tÞ in objective form, the standard procedures can be applied to show the frame-

indifference of the constitutive equations consisting of

W ¼ eWWðeÞ; e ¼ ðE; d;rd; hÞ ð2:21Þ

together with

S ¼ eSSðe; f;rhÞ ¼ oE eWWðeÞ þ eSS �ðe; f;rhÞ;
k ¼ ~kkðe; f;rhÞ ¼ od eWWðeÞ þ ~kk�ðe; f;rhÞ;
H ¼ eHHðe; f;rhÞ ¼ ord

eWWðeÞ þ eHH�ðe; f;rhÞ;
ð2:22Þ

where f ¼ ð _EE; _dd;r _ddÞ, and

.0g ¼ .0~ggðeÞ ¼ 
oh
eWWðeÞ; q ¼ ~qqðe; f;rhÞ: ð2:23Þ

With (2.21)–(2.23) the reduced dissipation inequality (2.20) takes the frame invariant form

D ¼ eSS �ðe; f;rhÞ � _EE þ ~kk�ðe; f;rhÞ � _ddþ eHH�ðe; f;rhÞ � r _dd
 h
1~qq � rh P 0: ð2:24Þ

As it is seen, the complete specification of the constitutive equations requires the determination of the

response functions eWWðeÞ, ~qqðe; f;rhÞ, eSS �ðe; f;rhÞ, ~kk�ðe; f;rhÞ and eHH�ðe; f;rhÞ. In the case of dynamical
damage evolution, also the inertia tensor A of the moving microdefects must be determined by a constitutive

equation.

2.5. Dissipation pseudo-potential

The form of the reduced dissipation inequality (2.24) suggests to assume the existence of a dissipation

pseudo-potential of the general form

U ¼ eUUðe; f;rhÞ ð2:25Þ

such that the dissipative macro- and microforces, microstresses and the heat flux vector can be obtained as

eSS � ¼ o _EE
eUUðe; f;rhÞ;

~kk� ¼ o _dd
eUUðe; f;rhÞ;eHH� ¼ or _dd
eUUðe; f;rhÞ;

h
1q ¼ 
orh
eUUðe; f;rhÞ:

ð2:26Þ

With (2.25) and (2.26) the general constitutive equations for macro- and microforces and microstresses
can be given as functions of the free energy potential eWW and the dissipation pseudo-potential eUU
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S ¼ eSSðe; f;rhÞ ¼ oE eWWðeÞ þ o _EE
eUUðe; f;rhÞ;

k ¼ ~kkðe; f;rhÞ ¼ od eWWðeÞ þ o _dd
eUUðe; f;rhÞ;

H ¼ eHHðe; f;rhÞ ¼ ord
eWWðeÞ þ or _dd

eUUðe; f;rhÞ;
h
1q ¼ 
orh

eUUðe; f;rhÞ;

ð2:27Þ

while the dissipation inequality (2.24) takes now the form

D ¼ o _EE
eUUðe; f;rhÞ � _EE þ o _dd

eUUðe; f;rhÞ � _ddþ or _dd
eUUðe; f;rhÞ � r _ddþ orh

eUUðe; f;rhÞ � rhP 0: ð2:28Þ

The advantage of the introduction of a dissipation pseudo-potential is obvious. Instead of specifying the

four response functions eSS �ðe; f;rhÞ, ~kk�ðe; f;rhÞ, eHH�ðe; f;rhÞ and ~qqðe; f;rhÞ independently, the choice of
one scalar-valued response function (2.25) determines completely the dissipative parts of the macro- and
microvariables. However, the existence of the dissipation pseudo-potential must be proved for each class of

problems.

2.6. Micromechanical damage theory

Introducing the constitutive equations (2.22) into the balance laws of macro- and microforces (2.7)1 and

(2.8), taking into account (2.5), the following system of coupled field equations for the analysis of the

damage evolution is obtained:

DivðFoE eWWðeÞ þ F eSS �ðe; f;rhÞÞ þ b ¼ .0€xx;

Divðord
eWWðeÞ þ eHH�ðe; f;rhÞÞ 
 od eWWðeÞ 
 ~kk�ðe; f;rhÞ þ g ¼ .0A

€dd
ð2:29Þ

with the arguments e ¼ ðE; d;rd; hÞ and f ¼ ð _EE; _dd;r _ddÞ. If for the problem under consideration there exists

a dissipation pseudo-potential eUUðe; f;rhÞ such that the constitutive equations (2.27) are valid, the gov-

erning equations (2.29) for the damage analysis are obtained as

DivðFoE eWWðeÞ þ Fo _EE
eUUðe; f;rhÞÞ þ b ¼ .0€xx;

Divðord
eWWðeÞ þ or _dd

eUUðe; f;rhÞÞ 
 od eWWðeÞ 
 o _dd
eUUðe; f;rhÞ þ g ¼ .0A

€dd:
ð2:30Þ

Eqs. (2.29) and (2.30), respectively, must be supplemented by appropriate boundary and initial condi-

tions. In the classical macrotheory, the boundary conditions at any point X 2 oB0 consist of prescribed

displacements or tractions or some suitable combination thereof. Here, we assume that there are two
disjoint, time independent subsets of oB0 such that the traction boundary condition is specified on the part

oB0f (analogous to the Neumann condition), while on the complementary part oB0u the kinematic boundary

condition is specified (analogous to the Dirichlet condition):

TðX ; tÞn0ðXÞ ¼ t�ðX ; tÞ; ðX ; tÞ 2 oB0f � T ;

uðX; tÞ ¼ u�ðX; tÞ; ðX ; tÞ 2 oB0u � T ;
ð2:31Þ

where T ¼ FS and u ¼ x
 X . The boundary conditions associated with the damage field d are formulated

in the same manner, i.e. on two complementary parts oB0k and oB0d ¼ oB0 n oB0k of the boundary the

following conditions are assumed

HðX ; tÞn0ðXÞ ¼ k�ðX ; tÞ; ðX ; tÞ 2 oB0k � T ;

dðX; tÞ ¼ d�ðX; tÞ; ðX ; tÞ 2 oB0d � T :
ð2:32Þ
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The initial conditions at time t ¼ 0 for all X 2 B are

xðX ; 0Þ ¼ x0ðXÞ; _xxðX ; 0Þ ¼ v0ðXÞ;
dðX ; 0Þ ¼ d0ðXÞ; _ddðX ; 0Þ ¼ v0ðXÞ:

ð2:33Þ

The fields marked in (2.31)–(2.33) by upper asterisks and lower index zero, respectively, are given
functions which must be specified for each class of initial-boundary value problems.

The presented Eqs. (2.29)–(2.33) together with the local equation of energy balance (2.9) and appropriate

boundary and initial conditions for temperature and heat flux constitute the complete set of field equations

and initial and boundary conditions to define a damage evolution theory for thermo-viscoelastic bodies

subject to arbitrary dynamical loading. It provides a thermodynamically consistent framework for the

modeling of weakly nonlocal as well as local damage theories for thermo-viscoelastic and quasi-brittle

materials.

Simplifications of the general result are obtained by assuming

• quasi-static deformation and quasi-static damage evolution: €xx ¼ 0, A€dd ¼ 0,

• no chemical reactions breaking internal material bonds: g ¼ 0,

• isothermal process: rh ¼ 0, hðX ; tÞ ¼ const.,

• isotropic damage described by a single scalar-valued damage parameter: d ¼ ðd; 0; 0Þ.

Because of its importance for engineering applications the case of isotropic damage will be considered in

the following section for various classes of material properties. Analogous results can be derived also for
anisotropic damage (see Section 4.1).

3. Isotropic damage

3.1. Thermo-viscoelastic material

In the case of isotropic damage the process of degradation of material is described by a single scalar-
valued function dðX ; tÞ and its gradient by the vector-valued function rdðX ; tÞ 2 E, where d may represent

e.g. the number of microcracks in a representative volume element and rd is its spatial change. In this case

the balance law of microforces (2.8) with (2.5)2 reduces to the balance equation of scalar-valued microforces

Divh
 k þ g ¼ .0A€dd: ð3:1Þ
Here hðX ; tÞ 2 E is the microstress vector work-conjugate to rd, kðX ; tÞ a scalar-valued microforce

work-conjugate to d, gðX; tÞ a scalar-valued chemical reaction, and AðXÞ the microinertia coefficient as-

sociated with the dynamical microcrack evolution. It should be noted that the time-scale of chemical re-

actions is in general quite different from the time-scale of the thermodynamical process of damage.

With the shortenings e ¼ ðE; d;rd; hÞ and f ¼ ð _EE; _dd;r _ddÞ, the free energy is given by a free energy
function W ¼ eWWðeÞ, and the constitutive equations (2.22) and (2.23) reduce to the form

S ¼ oE eWWðeÞ þ eSS �ðe; f;rhÞ;
k ¼ od eWWðeÞ þ ~kk�ðe; f;rhÞ;
h ¼ ord

eWWðeÞ þ ~hh�ðe; f;rhÞ
ð3:2Þ

and

.0g ¼ .0~ggðeÞ ¼ 
oh
eWWðeÞ; q ¼ ~qqðe; f;rhÞ: ð3:3Þ
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If there exists a dissipation pseudo-potential U ¼ eUUðe; f;rhÞ, then the dissipative parts of the constitutive

equations (3.2) are given by

eSS �ðe; f;rhÞ ¼ o _EE
eUUðe; f;rhÞ;

~kk�ðe; f;rhÞ ¼ o _dd
eUUðe; f;rhÞ;

~hh�ðe; f;rhÞ ¼ or _dd
eUUðe; f;rhÞ

ð3:4Þ

and (3.3)2 by

h
1q ¼ 
orh
eUUðe; f;rhÞ: ð3:5Þ

The dissipation inequality (2.24) reads for isotropic damage

D ¼ eSS �ðe; f;rhÞ � _EE þ ~kk�ðe; f;rhÞ _dd þ ~hh�ðe; f;rhÞ � r _dd 
 ~qqðe; f;rhÞ � rhP 0 ð3:6Þ
and

D ¼ o _EE
eUUðe; f;rhÞ � _EE þ o _dd

eUUðe; f;rhÞ _dd þ or _dd
eUUðe; f;rhÞ � r _dd þ orh

eUUðe; f;rhÞ � rhP 0; ð3:7Þ
respectively.

The macro- and microbalance laws for isotropic damage evolution in thermo-viscoelastic material follow

from (2.29) as

DivðFoE eWWðeÞ þ F ~SS�ðe; f;rhÞÞ þ b ¼ .0€xx;

Divðord
eWWðeÞ þ ~hh�ðe; f;rhÞÞ 
 od eWWðeÞ 
 ~kk�ðe; f;rhÞ þ g ¼ .0A€dd

ð3:8Þ

and corresponding equations, if the constitutive relations (3.4) are valid.

3.2. Isothermal process

3.2.1. Quasi-brittle and elastic materials

For isothermal process the space gradient of temperature vanishes, rh ¼ 0. Consequently, the heat flux

vector vanishes according to (3.5), q ¼ 0, and the constitutive equations (3.2) reduce to the form

S ¼ oE eWWðeÞ þ ~SS�ðe; fÞ; k ¼ od eWWðeÞ þ ~kk�ðe; fÞ; h ¼ ord
eWWðeÞ þ ~hh�ðe; fÞ ð3:9Þ

with e 
 ðE; d;DdÞ and f 
 ð _EE; _dd;r _ddÞ. These constitutive equations include rate effects of the macrostrains

and of the damage variables. However, in the damage analysis of quasi-brittle materials such as concrete

and ceramics rate effects can often be neglected so that further simplifications of the constitutive equations

(3.9) are possible.

We assume that the dissipative parts of the second Piola–Kirchhoff stress tensor, ~SS�, and of the micro-

stress vector, ~hh�, are small and can be neglected:

eSS �ðe; fÞ ¼ o _EE
eUUðe; fÞ ¼ 0; ~hh�ðe; fÞ ¼ or _dd

eUUðe; fÞ ¼ 0; ð3:10Þ

leading to the constitutive equations

S ¼ oE eWWðeÞ; h ¼ ord
eWWðeÞ: ð3:11Þ

However, even for quasi-brittle material we cannot neglect the dissipative part of the intrinsic microforce

k. Thus, with (3.9)2 we have

k ¼ od eWWðeÞ þ ~kk�ðe; _EE; _dd;r _ddÞ: ð3:12Þ
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Then, the dissipation inequality (3.6) reduces to the form

D ¼ ~kk�ðe; _EE; _dd;r _ddÞ _dd P 0: ð3:13Þ
From (3.13) the following general restriction for the dissipative part of the intrinsic microforce is ob-

tained:

~kk�ðe; _EE; _dd;r _ddÞP 0; ð3:14Þ
whenever _dd > 0, i.e. the damage increases. The case _dd < 0 is considered to be physically not realistic.

If there exists a dissipation pseudo-potential U ¼ eUUðe; _EE; _dd;r _ddÞ such that

~kk�ðe; _EE; _dd;r _ddÞ ¼ o _dd
eUUðe; _EE; _dd;r _ddÞ; ð3:15Þ

then the dissipation inequality (3.13) takes the form

D ¼ o _dd
eUUðe; _EE; _dd;r _ddÞ _dd P 0: ð3:16Þ

The restrictions (3.14) and (3.16), respectively, are direct consequences of the reduced dissipation in-

equality, which in turn was derived as implication of the Clausius–Duhem inequality (2.12).

A further specification can be obtained, if we assume that the driving microforce ~kk�ðe; _EE; _dd;r _ddÞ for

quasi-brittle and elastic material is homogeneous of degree one with respect to _EE, _dd and r _dd. Hence, its
general form can be written as

~kk�ðe; _EE; _dd;r _ddÞ ¼ BðeÞ 
 CðeÞ _dd þ LðeÞ � _EE þHðeÞ � r _dd: ð3:17Þ
Here, BðeÞ, CðeÞ are scalar-valued, HðeÞ vector-valued, and LðeÞ tensor-valued functions of e 


ðE; d;rdÞ. With (3.17) the constitutive equation (3.12) for intrinsic microforce takes the form

k ¼ od eWWðeÞ þBðeÞ 
 CðeÞ _dd þ LðeÞ � _EE þHðeÞ � r _dd: ð3:18Þ
A slightly different, but for later considerations appropriate constitutive form of the microforce k is

obtained by assuming that instead of its dissipative part (3.17) ~kk�ðe; _EE; _dd;r _ddÞ can be represented as

~kk�ðe; _EE; _dd;r _ddÞ ¼ BðeÞ 
 CðeÞ _dd þLðeÞ _EEðEÞ þHðeÞ � r _dd ð3:19Þ
with L and E scalar-valued constitutive functions. Then, the microforce (3.18) takes the form

k ¼ 
CðeÞ _dd þLðeÞ _EEðEÞ þHðeÞ � r _dd þWðeÞ ð3:20Þ
with

WðeÞ 
 od eWWðeÞ þBðeÞ: ð3:21Þ
Assuming that E ¼ EðEÞ is differentiable, then _EEðEÞ ¼ oEEðEÞ � _EE and hence

LðeÞ _EEðEÞ ¼ LðeÞoEEðEÞ � _EE: ð3:22Þ
A comparison of (3.17) with (3.19) leads to the representation LðeÞ ¼ LðeÞoEEðEÞ, which is used in the

next section to specify the microforce k.

3.2.2. Isotropic elastic material

If the material possesses some symmetries in its physical structure further specifications of the constitu-

tive response functions are possible. Such properties are defined in terms of material symmetry groups

(Truesdell and Noll, 1965). For isotropic material, the symmetry group is the full orthogonal group OðEÞ.
In this case, the combined restrictions due to material frame-indifference and material symmetry imply that
the free energy response function eWWðE; d;rdÞ is an isotropic function of its arguments. Accordingly, by the

classical representation theorem of tensor functions (e.g. Truesdell and Noll, 1965), eWWðeÞ ¼ eWWðE; d;rdÞ
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depends on E and rd only through the joint invariants of E and rd consisting of three principal invariants

I1, I2, I3 of E defined by

I1 ¼ trE; I2 ¼
1

2
fðtrEÞ2 
 trðE2Þg; I3 ¼ detE ð3:23Þ

and three additional joint invariants I4, I5, I6 defined by

I4 ¼ rd � rd; I5 ¼ rd � Erd; I6 ¼ rd � E2rd: ð3:24Þ
Thus, the constitutive form of the free energy W ¼ eWWðE; d;rdÞ for finite strains E and arbitrary vectors

rd is

W ¼ eWWðd; i; jÞ; i 
 ðI1; I2; I3Þ; j 
 ðI4; I5; I6Þ; ð3:25Þ
leading with (3.11) to the constitutive equations for the stress tensor S and the microstress vector h

S ¼ ðW1 þ I1W2 þ I2W3Þ1þ ðW2 
 I1W3ÞE þ W3E
2 þ W5ðrd �rdÞ þ W6ðErd �rd þrd � ErdÞ

ð3:26Þ
and

h ¼ 2ðW41þ W5E þ W6E
2ÞDd; ð3:27Þ

where

Wa ¼ Waðd; i; jÞ 
 o eWWðd; i; jÞ=oIa; a ¼ 1; . . . ; 6: ð3:28Þ
The constitutive equation for the microforce k according to (3.20) and (3.21) is obtained as

k ¼ 
Cðd; i; jÞ _dd þLðd; i; jÞ _EEðiÞ þHðd; i; jÞ � r _dd þWðd; i; jÞ ð3:29Þ
with

Wðd; i; jÞ 
 od eWWðd; i; jÞ þBðd; i; jÞ; ð3:30Þ
where i and j stand for the lists of invariants defined in (3.25). Moreover, the time derivative of E ¼ EðiÞ is
given by

_EE ¼ ðoI1EÞ_II1 þ ðoI2EÞ_II2 þ ðoI3EÞ_II3: ð3:31Þ
Noting that the invariants i 
 ðI1; I2; I3Þ are defined by (3.23) it is not difficult to show that

_II1 ¼ 1 � _EE; _II2 ¼ ðI11
 EÞ � _EE; _II3 ¼ ðI21
 I1E þ E2Þ � _EE: ð3:32Þ
Substituting (3.32) into (3.31) yields

_EE ¼ fðE1 þ I1E2 þ I2E3Þ1
 ðE2 þ I1E3ÞE þ E3E
2g � _EE; ð3:33Þ

where Ek ¼ oE=oIk, k ¼ 1; 2; 3.
Similar relations can be derived also if the dissipative part of the microforce ~kk� according to (3.19) is

given in terms of a pseudo-dissipation potential.

3.2.3. Application of the strain equivalence hypothesis

Essential simplifications of the constitutive equations are obtained by assuming a specific form of the

free energy function eWWðE; d;rdÞ and Wðd; i; jÞ, respectively. A simple model of this kind, which never-

theless encompasses a wide class of brittle materials, is described by a free energy function of the form

W ¼ eWWðE; d;rdÞ ¼ ð1
 dÞW0ðEÞ þ 	WWðrdÞ; ð3:34Þ
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where W0ðEÞ is identified with the free energy of the undamaged elastic material, and 	WWðrdÞ represents that
contribution to the free energy resulting from weakly non-local interactions. The assumption (3.34), which

can be regarded as a weakly non-local generalization of the so-called strain equivalence hypothesis, yields

the constitutive equations for the stress tensor S and the microforce vector h according to (3.11) in the form

S ¼ ð1
 dÞoEW0ðEÞ; h ¼ ord
	WWðrdÞ: ð3:35Þ

Assuming that in (3.20) the term HðeÞ � r _dd can be neglected the microforce k is obtained as

k ¼ 
CðeÞ _dd þLðeÞ _EEðEÞ þWðeÞ ð3:36Þ
with

WðeÞ ¼ 
W0ðEÞ þBðeÞ ð3:37Þ
and e 
 ðE; d;rdÞ.

For isotropic elastic material behavior, W0 and 	WW and the constitutive functions appearing in (3.36) must

be isotropic functions of their arguments. Thus

W0 ¼ W0ðI1; I2; I3Þ; 	WW ¼ WðI4Þ; ð3:38Þ
where the invariants are defined by (3.23) and (3.24)1. From (3.26) and (3.27), it follows that in the case of

isotropic material behavior the constitutive equations (3.35) reduce to the form

S ¼ ð1
 dÞðW 0
1 þ I1W 0

2 þ I2W 0
3 Þ1þ ðW 0

2 
 I1W 0
3 ÞE þ W 0

3 E
2 ð3:39Þ

and

h ¼ ord
	WWðrdÞ ¼ 2W 41rd; ð3:40Þ

where

W 0
i 
 oW0ðI1; I2; I3Þ=oIi; i ¼ 1; 2; 3; W 4 
 o 	WWðI4Þ=oI4: ð3:41Þ

Moreover, the constitutive equation (3.36) takes the form

k ¼ 
Cðd; i; jÞ _dd þLðd; i; jÞ _EEðiÞ þWðd; i; jÞ ð3:42Þ
with

Wðd; i; jÞ ¼ 
W0ðI1; I2; I3Þ þBðd; i; jÞ: ð3:43Þ

3.2.4. Small strain assumption

Under the assumption of small strains the free energy of the undamaged material W0 is given by the

quadratic form

W0ðEÞ ¼ 1

2
f2ltrðE2Þ þ kðtrEÞ2g ð3:44Þ

with the Lam�ee coefficients k and l, and the Green strain tensor E, which for small strains can be identified

also with the linear strain tensor. In (3.38), the invariant W 4 according to (3.41)2 is constant leading to the

weakly non-local energy contribution

	WWðrdÞ ¼ 1

2
Krd � rd ð3:45Þ

and the constitutive equations for the second Piola–Kirchhoff stress tensor S and the microstress vector h

S ¼ ð1
 dÞf2lE þ kðtrEÞ1g; h ¼ Krd: ð3:46Þ
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For small strains essential simplifications can also be introduced in the constitutive equation for the

microforce k due to (3.42). We may assume that C is independent ofrd, thatL depends on E only through

EðEÞ, and that EðEÞ and BðEÞ are independent of rd:

Cðd;EÞP 0; Lðd;EÞ ¼ Lðd;EðEÞÞ; B ¼ Bðd;EÞ: ð3:47Þ

Then the constitutive equation (3.42) with (3.43) reduces to the form

k ¼ 
Cðd;EÞ _dd þLðd;EÞ _EEðEÞ þWðd;EÞ ð3:48Þ

with

Wðd;EÞ ¼ 
W0ðEÞ þBðd;EÞ: ð3:49Þ

For isothermal process with rh ¼ 0 and isotropic elastic material behavior and applying the strain

equivalence hypothesis the balance laws of macro- and microforces (3.8) lead to

DivðFSÞ þ b ¼ .0€xx;

Divh
 k þ g ¼ .0A€dd
ð3:50Þ

with the constitutive equations for S, h and k given by (3.46)–(3.49) and an additional constitutive equation

for the scalar-valued inertia function A. Together with corresponding boundary and initial condition

equations (3.50) define a weakly nonlocal and gradient, respectively, model for isotropic damage valid
under the assumptions specified above. To construct a FE solution algorithm, we have to formulate a

virtual work principle as weak solution of (3.50).

The gradient damage model of Fr�eemond and Nedjar (1996) and Pires-Domingues et al. (1999) is ob-

tained from Eqs. (3.50) and their weak form, if the damage evolution is quasi-static, €xx ¼ 0, €dd ¼ 0, chemical

reactions can be neglected, g ¼ 0, and the following additional constitutive assumptions are valid:

• Cðd;EÞ ¼ C > 0 is a constant,

• Lðd;EÞ ¼ 0,
• Wðd;EÞ ¼ W is a constant,

yielding an isotropic damage model with five and six, respectively, material parameters, l, k, K, C and W
determined experimentally for concrete by Fr�eemond and Nedjar (1996).

4. Anisotropic damage

4.1. One-field modeling

In Section 2 we introduced a set d ¼ ðd; d;DÞ of scalar-, vector- and tensor-valued functions to describe
damage phenomena. In this subsection, it is assumed that anisotropic damage can be defined by an aniso-

tropy tensor D

d ¼ ð0; 0;DÞ: ð4:1Þ

In this case, the derivation of anisotropic damage theories can follow the specification and simplification

procedure outlined in detail in Section 3 for isotropic damage, so we do not need to repeat it here.

In the literature a one-field anisotropic gradient damage model is proposed by Marshall et al. (1991),
where the anisotropy of damage is described by a vector-valued function. In effect, the theory of Marshall

et al. follows from the general theory of Section 2 as special case, if we choose d ¼ ð0; d; 0Þ.
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4.2. Two-field modeling

In this subsection, we assume that anisotropic damage phenomena can be described by a scalar d and a

tensor D, so that the set of damage variables introduced in Section 2 is

d ¼ ðd; 0;DÞ ð4:2Þ

with the gradients

rd ¼ ðrd; 0;rDÞ: ð4:3Þ
Assuming for simplicity quasi-static isothermal processes the balance law of macroforces follows from

(2.7)1 as

DivðFSÞ þ b ¼ 0 ð4:4Þ
and the balance laws of microforces from (2.8) as

Divh
 k þ g ¼ 0; ð4:5Þ

DivH
 K þ G ¼ 0; ð4:6Þ

where the microforce k is power-conjugate to _dd, K power-conjugate to _DD, and the microstresses h and H
power-conjugate to r _dd and r _DD, respectively.

For many damage problems of engineering interest, it can be assumed that the gradient of the anisotropy

tensor D is small and can be omitted in the list of constitutive variables. Thus, under the assumption

rD ¼ 0, we have H ¼ 0 so that Eq. (4.6) reduces to the form


K þ G ¼ 0: ð4:7Þ
Moreover, the free energy (2.21) satisfying the dissipation inequality (2.15) is given by

W ¼ bWWðe;DÞ; e ¼ ðE; d;rdÞ ð4:8Þ
and the constitutive equations for macrostress S, microforces k and K , and microstress h by

S ¼ oE bWWðe;DÞ þ S�ðe;D; _ee; _DDÞ;

k ¼ od bWWðe;DÞ þ k�ðe;D; _ee; _DDÞ;

K ¼ oD bWWðe;DÞ þ K�ðe;D; _ee; _DDÞ;

h ¼ ord
bWWðe;DÞ þ h�ðe;D; _ee; _DDÞ:

ð4:9Þ

Here _ee ¼ ð _EE; _dd;r _ddÞ. The dissipation inequality (2.24) takes now the form

D ¼ S� � _EE þ k� _dd þ h� � r _dd þ K � _DDP 0: ð4:10Þ

Introducing the constitutive equations (4.9) into (4.4)–(4.6), we obtain the governing equations for quasi-
static deformation and two-field anisotropic damage evolution

DivðFoE bWWðe;DÞ þ FS�ðe;D; _ee; _DDÞÞ þ b ¼ 0; ð4:11Þ

Divðord
bWWðe;DÞ þ h�ðe;D; _ee; _DDÞÞ 
 od bWWðe;DÞ 
 k�ðe;D; _ee; _DDÞ þ g ¼ 0; ð4:12Þ


oD bWWðe;DÞ 
 K�ðe;D; _ee; _DDÞ þ G ¼ 0: ð4:13Þ
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It should be noted that (4.11) and (4.12) are partial differential equations, while (4.13) is an ordinary

differential equation. This simplification was obtained by omitting rD in the list of arguments of the

constitutive equations. In effect, Eq. (4.13) represents the damage evolution law for D in implicit form.

Assuming that the microforce K� power-conjugate to _DD is homogeneous of first degree in _DD, we can write

K�ðe;D; _ee; _DDÞ ¼ Aðe;DÞ _DDþ Cðe;D; _eeÞ ð4:14Þ

with A a fourth-order and C a second-order constitutive tensor. Introducing (4.14) into the balance law of

microforces (4.13) leads to


oD bWWðe;DÞ 
Aðe;DÞ _DD
 Cðe;D; _eeÞ þ G ¼ 0: ð4:15Þ

If the fourth-order tensor Aðe;DÞ is non-singular, then the damage evolution law for the anisotropy

tensor D is obtained as

_DD ¼ Aðe;DÞ
1ðG 
 oD bWWðe;DÞ 
 Cðe;D; _eeÞÞ: ð4:16Þ

As a result, for quasi-static and isothermal process, the anisotropic damage evolution is described by

Eqs. (4.11)–(4.16), if rD can be neglected. Appropriate simplifications of the constitutive functions can be

obtained following the ideas outlined in Section 3.

Assuming furthermore that also rd can be neglected––in general an incorrect assumption in the case of
damage localization––local theories of anisotropic damage are obtained. In the literature a local model of

anisotropic damage was presented by Murakami and Kamiya (1997) using a scalar and a tensor variable.

5. Conclusions

A thermodynamically consistent micromechanical theory for the analysis of damage evolution in

thermo-viscoelastic and quasi-brittle materials is presented. It can be considered as a framework for the

modeling of weakly nonlocal and gradient, respectively, damage theories. The main features can be sum-

marized as follows.

• To describe isotropic and anisotropic damage, kinematical damage variables of scalar-, vector- and ten-

sor-type are introduced.

• The theory is based on balance laws of macro- and microforces and first and second law of thermo-

dynamics formulated for macro- and mesolevel.

• Inertia and kinetic energy of evolving microdefects and chemical reactions breaking internal material

bonds are taken into account.

• General constitutive equations are formulated. From the Clausius–Duhem inequality it follows that the
macro- and microforces consist of non-dissipative and dissipative parts. The dissipative microforces can

be considered as driving forces on microdefects causing their motion.

• For isotropic damage the constitutive equations for various classes of material properties and process

data are discussed in detail.

• For anisotropic damage described by a scalar and a tensor function, simplified gradient theories can be

obtained, if the gradient of the anisotropy tensor can be neglected.

Further research work should be devoted to the determination of the constitutive functions for specified
classes of material properties and process data and to the implementation of FE solution algorithms for

gradient damage models.
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